
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 6-13-2014

POWER MANAGEMENT IN THE CLUSTER
SYSTEM
Leping Wang
University of Nebraska-Lincoln, leping@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer and Systems Architecture Commons, OS and Networks Commons, and
the Systems Architecture Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Wang, Leping, "POWER MANAGEMENT IN THE CLUSTER SYSTEM" (2014). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 78.
http://digitalcommons.unl.edu/computerscidiss/78

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/78?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

POWER MANAGEMENT IN THE CLUSTER SYSTEM

by

Leping Wang

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Ying Lu

Lincoln, Nebraska

June, 2014

www.manaraa.com

POWER MANAGEMENT IN THE CLUSTER SYSTEM

Leping Wang, M.S.

University of Nebraska, 2014

Adviser: Ying Lu

With growing cost of electricity, the power management of server clusters has

become an important problem. However, most previous researchers have only

addressed the challenge in traditional homogeneous environments. Considering

the increasing popularity of heterogeneous and virtualized systems, this thesis

develops a series of efficient algorithms respectively for power management of

heterogeneous soft real-time clusters and a virtualized cluster system. It is built

on simple but effective mathematical models. When deployed to a new platform,

the software incurs low configuration cost because no extensive performance mea-

surements and profiling are required. Built upon optimization, queuing theory

and control theory techniques, our approach achieves the design goal, where QoS

is provided to a larger number of requests with a smaller amount of power con-

sumption. To strive for efficiency, a threshold based approach is adopted in the

first part of the thesis. Then we systematically study this approach and its design

decisions. To deploy our mechanisms on the virtualized clusters, we extend the

work by developing a novel power-efficient workload distribution algorithm.

www.manaraa.com

iii

ACKNOWLEDGMENTS

It would not have been possible to write this master thesis without the help and

support of the kind people around me, to only some of whom it is possible to

give particular mention here.

Above all, I would like to express the deepest appreciation to my advisor Prof.

Ying Lu for the continuous support of my graduate study and research, for his

patience, motivation, enthusiasm, and immense knowledge. Her guidance helped

me in all the time of research and writing of this thesis.

I would like to thank my committee members, Prof. Hong Jiang, Prof. Steve

Goddard, Prof. David Swanson and Prof. Wei Qiao for serving as my committee

members even at hardship. I also want to thank you for letting my defense be an

enjoyable moment, and for your brilliant comments and suggestions, thanks to

you.

Last but not the least, a special thanks to my family. Words cannot express

how grateful I am to my parents, my parents-in-law and my wife for all of the

sacrifices that you have made on me. Your great love for me was what sustained

me thus far.

www.manaraa.com

iv

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 4

3 Efficient Power Management of Heterogeneous Soft Real-Time Clusters 6

3.1 Models . 7

3.1.1 System Model . 7

3.1.2 Capacity Model . 8

3.1.3 Power Model . 9

3.2 Power Management Problem . 10

3.3 Algorithm . 12

3.3.1 Optimization Heuristic Framework 13

3.3.2 Ordered Server List . 14

3.3.3 Server Activation Thresholds 16

3.3.4 Workload Distribution . 18

www.manaraa.com

v

3.3.5 Algorithm Nomenclature . 24

3.4 Performance Evaluation . 24

3.4.1 Effects of Ordered Server List 28

3.4.2 Effects of Activation Thresholds and Workload Distribution . 30

3.4.3 Evaluation of Integrated Algorithms 33

3.4.4 Empirical Workload Simulation 35

3.4.5 Effects of Feedback Control . 37

4 Power-Efficient Workload Distribution for Virtualized Sever Clusters 40

4.1 Models . 41

4.1.1 System Architecture . 41

4.1.2 Capacity Model . 42

4.1.3 Power Model . 42

4.2 Power Management Problem . 43

4.3 Workload Distribution Algorithms . 45

4.3.1 PE-based Workload Distribution 46

4.3.2 LB-based Workload Distribution 47

4.3.3 Capacity-based Workload Distribution 48

4.3.4 DVS and CPU Resource Allocation 48

4.4 Admission Control Algorithms . 49

4.4.1 PE and LB-based Admission Control 50

4.4.2 Capacity-based Admission Control 52

4.5 Performance Evaluation . 53

4.5.1 Non-Overloaded Cluster1 . 56

4.5.2 Non-Overloaded Cluster2 . 56

4.5.3 Effects of Virtual Machine Placement 57

www.manaraa.com

vi

4.5.4 Admission Control Performance 62

5 Conclusion 67

Bibliography 68

www.manaraa.com

vii

List of Figures

3.1 System Model . 8

3.2 Average Request Rate . 26

3.3 Effects of Ordered Server List: Time . 29

3.4 Effects of Ordered Server List: Power . 30

3.5 Effects of Activation Thresholds and Workload Distribution: Time . . . 31

3.6 Effects of Activation Thresholds and Workload Distribution: Power . . . 32

3.7 Integrated Algorithms: Time . 33

3.8 Integrated Algorithms: Power . 34

3.9 Simulation Result of Web Log Based Workload: Time 36

3.10 Simulation Result of Web Log Based Workload: Power 37

3.11 Effects of Feedback Control . 38

4.1 Average Request Rate . 55

4.2 Non-Overloaded Cluster1: Power Consumption 57

4.3 PE-based Non-Overloaded Cluster1: Average Response Time 57

4.4 LB-based Non-Overloaded Cluster1: Average Response Time 58

4.5 Capacity-based Non-Overloaded Cluster1: Average Response Time . . . 58

4.6 Non-Overloaded Cluster2: Power Consumption 59

4.7 Feasibility of Algorithms under Different VM Placements 60

www.manaraa.com

viii

4.8 PE-based Algorithm: Power Consumption 61

4.9 LB-based Algorithm: Power Consumption 61

4.10 Capacity-based Algorithm: Power Consumption 62

4.11 PE-based Overloaded Cluster1: Average Response Time 63

4.12 LB-based Overloaded Cluster1: Average Response Time 64

4.13 Capacity-based Overloaded Cluster1: Average Response Time 64

4.14 Power Consumption - Workload Level 1.2 65

4.15 Power Consumption - Workload Level 1.5 65

4.16 Power Consumption - Workload Level 1.8 66

4.17 Power Consumption - Workload Level 2.1 66

www.manaraa.com

ix

List of Tables

3.1 Parameters of a 4-Server Cluster . 25

4.1 Parameters of 4 Types of Server . 54

4.2 Cluster1: Service Parameters . 55

4.3 Request Reject Ratio under Different Workload Levels 62

4.4 Power Consumption (Watt) under Different Workload Levels 62

www.manaraa.com

1

Chapter 1

Introduction

With growing demands for high performance computing, more and more gi-

ant data centers are being built. When designing such a system, traditionally

researchers have focused on maximizing performance. Recently, with a better

understanding of the overall cost of computing [2], researchers have started to

pay more attention to optimizing performance per unit of cost. According to [2],

the total cost of ownership (TCO) includes the cost of cluster hardware, software,

operations and power. As a result of recent advances in chip manufacturing

technology, the performance per hardware dollar keeps going up. However, the

performance per watt has remained roughly flat over time. According to the U.S.

Environmental Protection Agency (EPA) 2007 Report to Congress, data centers in

the United States incur a total energy cost of approximately $4.5 billion in 2006

and in the absence of intervention, this figure is expected to double in year 2012.

If this trend continues, the power-related costs will soon exceed the hardware cost

and become a significant fraction of the total cost of ownership. As the rising cost

of energy makes it the single most important factor in data center operating costs,

energy minimization becomes one of the critical challenges in data centers.

www.manaraa.com

2

To avoid the projected energy expenditure and hence improve the performance

per watt, cluster power management mechanisms [8, 10, 19, 23, 31, 38, 41, 42, 4]

have been proposed. Most of them, however, are only applicable to homogenous

systems. Clusters are almost invariably heterogeneous in terms of performance,

capacity, and energy consumption of their hardware components [23]. The hetero-

geneity also comes from servers with different types of services [29]. Therefore,

we must explicitly consider cluster heterogeneity when developing power man-

agement mechanisms, in which two new challenges must be addressed. First,

according to load and server characteristics, a power management mechanism

must decide not only how many but also which cluster servers should be turned

on; second, unlike a homogenous cluster, where it is optimal to evenly distribute

load among active servers, identifying the optimal load distribution for a hetero-

geneous cluster is a non-trivial task.

A few researchers [23, 42] have investigated mechanisms to address the afore-

mentioned challenges. However, their mechanisms all require extensive perfor-

mance measurements (“at most few hours for each machine” [42]) or time-consuming

optimization processes. These high customization costs are prohibitive, especially

if the processes need to be executed repetitively. Composed of a large number

of machines, a cluster is very dynamic, where servers can fail, be removed from

or added to it frequently. To achieve high availability in such an environment,

a mechanism that is easy to be modified upon changes is essential. The first

work in my thesis proposes an efficient algorithm for power management (PM)

of heterogeneous soft real-time clusters. We make two contributions. First, the

algorithm is based on simple but effective mathematical models, which reduces

customization costs of PM components to new platforms. Second, the developed

online mechanisms are threshold-based. According to an offline analysis, thresh-

www.manaraa.com

3

olds are generated that divide the workload into several ranges. For each range,

the power management decisions are made offline. Dynamically, the PM com-

ponent just measures and predicts the cluster workload, decides its range, and

follows the corresponding decisions. In this work, we systematically investigate

this low-cost efficient power management approach. Simulation results show that

our algorithm not only incurs low overhead but also leads to near optimal power

consumption.

Beside the platform heterogeneity, another trend of building an up-to-date

server cluster is that virtualization technology is more commonly employed [33],

where multiple services called virtual machines (i.e., VMs) are consolidated and

placed together on a physical machine, leading to a smaller-sized and more

energy-efficient cluster. In a virtualized cluster, besides heterogeneous hardware,

we also face workload heterogeneity, where different servers often host different

VMs, serving different workloads.

There are many new challenges in applying classic methods of power man-

agement to a virtualized environment. First, unlike a homogenous cluster, where

it is optimal to distribute workload evenly among active servers, identifying the

optimal load distribution for a virtualized server cluster is a non-trivial task. Sec-

ond, traditional strategies for dynamic voltage scaling (DVS) cannot be directly

applied in a virtualized environment, because VMs hosted on a physical server

share the same CPU, whose state change will affect all their performance and

may violate their quality of service (QoS) if unattended. The second part of our

research, therefore, focuses on the problem of power-efficient workload distribu-

tion for virtualized server clusters.

www.manaraa.com

4

Chapter 2

Related Work

Power management of server clusters [8, 10, 19, 31, 38, 41] has become an impor-

tant problem. The authors of [6, 44] were the first to point out that cluster-based

servers could benefit significantly from dynamic voltage scaling (DVS). Besides

server DVS, dynamic resource provisioning (server power on/off) mechanisms

were investigated in [19, 31] to conserve power in clusters.

The aforementioned research has all focused on homogeneous systems. How-

ever, clusters are almost invariably heterogeneous in term of their performance,

capacity and power consumption [23]. Survey [5] discusses the recent work on

power management for server systems. It lists power management of heteroge-

neous clusters as one of the major challenges.

The research most closely related to the first part of the thesis is that of [23,

42]. The authors of [23] consider request distribution to optimize both power

and throughput in heterogeneous server clusters. Their mechanism takes the

characteristics of different nodes and request types into account. In [42], energy

efficient real-time heterogeneous clusters are investigated. Both papers note that

in heterogeneous clusters it is difficult to properly order servers with respect to

www.manaraa.com

5

power efficiency and it may not be optimal to turn on the smallest number of

machines to satisfy the current load.

Existing studies have another common limitation. They often do not con-

sider virtualized environments. As the virtualization technology is being widely

adopted, the power management of virtualized clusters becomes an important

problem. Wang et al. [50] focus their investigation on how to control CPU fre-

quency and share it among different VMs to satisfy power and performance con-

straints. Nathuji et al. [35] study power-budgeting methods to ensure that the

total power consumption of a virtualized cluster does not exceed the specified

budget. In papers [29, 26], the resource provisioning problem is investigated,

where methods are proposed to match VMs workload demand with the cluster

capacity. These methods could be leveraged to guide the power-efficient server

consolidation. Previous research [17] has also studied how to properly place VMs

on a cluster’s physical servers to improve energy efficiency. These works’ contri-

butions are complementary to ours.

The most closely related research with the second part of our work is by

Mukherjee et al. [34], where they investigate thermal-aware job scheduling in vir-

tualized heterogeneous data centers. Their assumed workload and system mod-

els are, however, different from ours. For instance, they do not assume workload

heterogeneity, where a request can only be served by some but not all physical

servers.

www.manaraa.com

6

Chapter 3

Efficient Power Management of

Heterogeneous Soft Real-Time

Clusters

In this chapter we introduce the first part of our Work, Efficient Power Manage-

ment of Heterogeneous Soft Real-Time Clusters.

As mentioned in Chapter 2, the authors of [23, 42] studied a similar problem

in heterogeneous systems. However, both approaches depend on time-consuming

optimizations to find the best cluster configuration for every possible load. Even

though the optimizations are executed offline, they need to be repeated every time

upon server failure, cluster upgrades or changes. Extensive performance measure-

ments [42] and a long optimization process [23, 42] lead to high customization

costs. To avoid these prohibitive costs, we propose in this work a simple power

management algorithm for heterogeneous clusters. The algorithm is based on

mathematical models that require minimum performance profiling. Instead of

solving the optimization problem for every possible load, our algorithm derives

www.manaraa.com

7

thresholds, divides load into ranges and determines the best cluster configuration

formula for each workload range, leading to a time-efficient optimization process.

Furthermore, our algorithm incurs low overhead and achieves close-to-optimal

power consumptions.

3.1 Models

In this section we present our models and state assumptions related to these

models.

3.1.1 System Model

A cluster consists of a front-end server, connected to N back-end servers. We

assume a typical cluster environment in which the front-end server does not par-

ticipate in the request processing. The main role of the front-end server is to

accept requests and distribute them to back-end servers. In addition, we deploy

the power-management mechanism on the front-end server to enforce a server

power on/off policy. Figure 3.1 shows a web server cluster example that fits our

system model.

In a heterogeneous cluster, different back-end servers could have different

computational capacities and power efficiencies. In the following, we provide

their models. We assume processors on the back-end servers support dynamic

voltage scaling and their operating frequencies could be continuously adjusted in

(0, fi max] range 1. The capacity model relates the CPU operating frequency to the

server’s throughput and the power model describes the relation between the CPU

1 In our report [47], we also evaluate the algorithm’s performance on servers with only discrete
frequency settings.

www.manaraa.com

8

Web Page Requests

 Back-end Web Server

 Back-end Web Server

 Back-end Web Server

 Back-end Web Server

Front-end Server

D
is

tr
ib

ut
ed

R
eq

ue
st

s

Response

Response

Distributed

Requests

Web Server Clusters

Figure 3.1: System Model

frequency and the power consumption. While our approach is general and could

be applicable to different capacity and power models, in this paper we assume

and use the following specific models to illustrate our method.

3.1.2 Capacity Model

We assume that the cluster provides CPU-bounded services, as typical web servers

do today [6]. Therefore, to measure the capacity of a back-end server its CPU

throughput is used as the metric, which is assumed to be proportional to the

CPU operating frequency. That is, the ith server’s throughput, denoted as µi, is

expressed as µi = αi fi, where αi is the CPU performance coefficient. Different

servers may have different values for αi. With the same CPU frequency setting,

www.manaraa.com

9

the higher the αi the more powerful the server is.

3.1.3 Power Model

The power consumption Pi of a server consists of a constant part and a variable

part. Similar to previous work [19, 10, 24], we approximate Pi by the following

function:

Pi = xi(ci + βi f
p
i) (3.1)

where xi denotes the server’s on/off state:

xi =

0 the ith server is off

1 the ith server is on

(3.2)

When a server is off, it consumes no power; when it is on, it consumes ci + βi f
p
i

amount of power. In this model, ci denotes the constant power consumption of

the server. It is assumed to include the base power consumption of the CPU

and the power consumption of all other components. In addition, the CPU also

consumes a power βi f
p
i that is varied with the CPU operating frequency fi. In the

remaining of this paper, we use p = 3 to illustrate our approach.

Hence, in the cluster the power consumption of all back-end servers can be

expressed as follows:

J =
N

∑
i=1

xi[ci + βi f 3
i] (3.3)

Here, for the purpose of differentiation, J is used to denote the cluster’s power

consumption while P denotes a server’s power consumption.

Following the aforementioned models, each server is specified with four pa-

www.manaraa.com

10

rameters: fi max, αi, ci, and βi. To obtain these parameters, only a little perfor-

mance profiling is required.

3.2 Power Management Problem

Given a cluster of N heterogeneous back-end servers, each specified with pa-

rameters fi max, αi, ci, and βi, the objective is to minimize the power consumed

by the cluster while satisfying the following QoS requirement: Ri ≈ R̂, where

Ri stands for the average response time of requests processed by the ith back-end

server and R̂ stands for the desired response time. The average response time Ri is

determined by the back-end server’s capacity and workload. We use µi = αi fi to

denote the server’s capacity and λi, the server’s average request rate, to represent

the workload. Thus, Ri is a function of these two parameters, i.e., Ri = g(µi , λi).

To enforce Ri ≈ R̂, we must control µi = αi fi and λi properly. As a result, the

power management problem is formed as follows:

minimize

J =
N

∑
i=1

xi[ci + βi f 3
i] (3.4)

subject to:

∑
N
i=1 xiλi = λcluster

xi(1 − xi) = 0, i = 1, 2, · · · , N

g(αi fi, λi) ≈ R̂, i = 1, 2, · · · , N

(3.5)

where λcluster is the current average request rate of the cluster. We assume

the cluster is not overloaded, that is, the average response time requirement

∀i, g(αi fi, λi) ≈ R̂ is feasible for the cluster with a λcluster request rate2. The

2An admission control mechanism could be applied to enforce this constraint.

www.manaraa.com

11

first optimization constraint guarantees that each request is processed by an ac-

tive back-end server while the second constraint says a server is either in an on or

an off state.

For the power management, the front-end component decides the server’s

on/off state (xi) and the workload distribution among the active servers (λi).

On the back-end, each active node adjusts its CPU operating frequency fi in the

(0, fi max] range to ensure the response time requirement, where a combined feed-

back control with queuing theoretic prediction approach, similar to that in [43], is

adopted.

According to the M/M/1 queuing model, function Ri = g(µi , λi) is approxi-

mated as follows:

Ri =
1

µi − λi
=

1

αi fi − λi
(3.6)

To guarantee Ri ≈ R̂, we approximate the proper fi to be:

fi =
λi

αi
+

1

αiR̂
(3.7)

when 0 < λi ≤ αi fi max − 1
R̂

. This approximation, however, may introduce mod-

eling inaccuracy. To overcome this inaccuracy, we combine feedback control with

queuing-theoretic prediction for the dynamic voltage scaling (DVS). Nevertheless,

experimental data shows that the queuing model estimate (Equation (3.7)) is very

close to the real fi setting of the combined approach. This close approximation

justifies the adoption of the queuing estimated fi in the problem formulation. The

power management problem becomes:

minimize
J =

N

∑
i=1

xi[ci + βi × (
λi

αi
+

1

αiR̂
)3] (3.8)

www.manaraa.com

12

subject to:

∑
N
i=1 xiλi = λcluster

xi(1 − xi) = 0, i = 1, 2, ..., N

0 ≤ λi ≤ αi fi max − 1
R̂

, i = 1, 2, ..., N

(3.9)

As shown above, the optimal solution is determined by two variables: individ-

ual server’s on/off state xi and workload distribution λi. To achieve the optimal

power consumption and to guarantee the average response time, the key therefore

lies in the front-end, i.e., the power on/off and workload distribution strategies.

We present these strategies in the next section.

3.3 Algorithm

When we design the power management strategies, one major focus is on their

efficiencies. For a given workload λcluster, the front-end power management needs

to decide 1) how many and which back-end servers should be turned on and 2)

how much workload should be distributed to each server. Since λcluster changes

from time to time, these decisions have to be reevaluated and modified regularly.

Thus, the decision process has to be very efficient.

The mechanism we propose is built on a sophisticated but low-cost offline anal-

ysis. It provides an efficient threshold-based online strategy. Assuming λ̂cluster

is the maximum workload that can be handled by the cluster without violating

the average response time requirement. The offline analysis generates thresh-

olds Λ1, Λ2, · · · , ΛN and divides (0, λ̂cluster] into (0, Λ1], (Λ1, Λ2], · · · , (Λk, Λk+1],

· · · , (ΛN−1, λ̂cluster] ranges (where ΛN = λ̂cluster). For each range, the power

on/off and workload distribution decisions are made offline. Dynamically the

www.manaraa.com

13

system just measures λcluster, decides its range, and follows the corresponding

power management decisions. Next, we present the details of our algorithm.

3.3.1 Optimization Heuristic Framework

In Section 3.2, the power management is formed as an optimization problem

(Equation (3.8) and (3.9)). Instead of solving it for all possible workload λcluster in

the (0, λ̂cluster] range, we propose the following heuristic to simplify the problem.

It is constructed with the following framework:

• The heuristic first orders the heterogeneous back-end servers. It gives a

sequence, called ordered server list, for activating machines. To shut down

machines, the reverse order is followed.

• Second, the optimal thresholds Λk, k ∈ {1, 2, 3, · · · N} for turning on and off

servers are identified: if λcluster is in the (Λk−1, Λk] range, it is optimal to

turn on the first k servers of the ordered server list. This also means if λcluster

changes between adjacent ranges, such as from (Λk−1, Λk] to (Λk, Λk+1], the

heuristic requires on/off state change for just one machine.

• Third, the optimal workload distribution problem is solved for N scenarios

where λcluster ∈ (Λk−1, Λk], k = 1, 2, · · · , N. When λcluster ∈ (Λk−1, Λk], it

is optimal to turn on the first k servers of the ordered server list, i.e., xi =

1, i = 1, 2, · · · k and xi = 0, i = k + 1, k + 2, · · · , N. With values of xi fixed,

the optimization problem (Equation (3.8) and (3.9)) becomes:

minimize

Jk =
k

∑
i=1

[ci + βi × (
λi

αi
+

1

αiR̂
)3] (3.10)

subject to:

www.manaraa.com

14

∑
k
i=1 λi = λcluster

0 ≤ λi ≤ αi fi max − 1
R̂

, i = 1, 2, ..., k

(3.11)

The analysis is simplified to solving the above optimization problem for

k = 1, 2, · · · , N. In contrast, to obtain the optimal power management solu-

tion (i.e., solving Equations (3.8) and (3.9) by an exhaustive search of all pos-

sible server on/off scenarios) for every integer point in the range (0, λ̂cluster]

requires solving ⌈λ̂cluster⌉2N number of problem instances in the form of

Equations (3.10) and (3.11).

In the next three subsections, we discuss the decisions on ordered server list,

server activation thresholds and workload distribution respectively. For each decision,

several strategies are investigated.

3.3.2 Ordered Server List

Our algorithm follows a specific order to turn on and off machines. To optimize

the power consumption, this order must be based on the server’s power efficiency,

which is defined as the amount of power consumed per unit of workload (i.e.,

Pi(λ)
λ). Servers with better power efficiencies are listed first.

According to the power model and the dynamic voltage scaling mechanism

adopted by back-end servers (Sections 3.1 & 3.2), the power consumption Pi(λ)

of a server includes a constant part ci and a variable part βi × (λ
αi
+ 1

αiR̂
)3 (see

Equation (3.8)). Given any two servers i and j, if ci ≤ cj and
βi

α3
i

≤ βj

α3
j

, server i has

a better power efficiency than server j. However, if ci < cj and
βi

α3
i

>
βj

α3
j

, the power

efficiency order of the two is not fixed. When the server workload λ is small, Pi(λ)

is less than Pj(λ) and server i has a better power efficiency; while as λ increases,

www.manaraa.com

15

Pi(λ) gets larger than Pj(λ) and server j’s power efficiency becomes better. In the

proposed method, to trade for online algorithm’s efficiency and minimum server

on/off operations, the ordered server list is determined offline and is not subject

to dynamic changes. Therefore, even if the servers’ power efficiency order is not

fixed, their activation order is nevertheless determined statically. Next we present

our method and list several alternatives for generating the activation order.

• Typical Power based policy (TP). We assume the typical workload for a

server is λ′
i. In our heuristic, servers are ordered by their power consumption

efficiency under the typical workload, i.e.,
Pi(λ

′
i)

λ′
i

. A server with smaller
Pi(λ

′
i)

λ′
i

,

i.e., smaller
ci+βi×(

λ′i
αi
+ 1

αiR̂
)3

λ′
i

, is listed earlier in the ordered server list. A power

management mechanism usually turns on a server when needed or when

it leads to a reduced power consumption (see Section 3.3.3). As a result,

an active server usually works under a high workload. Thus we choose a

workload that requires 80% capacity of a server as its typical workload λ′
i .

This way the ordered server list is created by comparing
Pi(λ

′
i)

λ′
i

and is solely

based on the server’s static parameters αi, ci, and βi.

• Activate All policy (AA). This activation policy always turns on all back-end

servers. Therefore in this case the power on/off mechanism is not needed.

Neither is the ordered server list.

• RANdom policy (RAN). This policy generates a random ordered server list for

server activation.

• Static Power based policy (SP). This policy orders machines by their static

power consumption. A server with a smaller static power consumption ci is

listed earlier in the ordered server list.

www.manaraa.com

16

• Pseudo Dynamic Power based policy (PDP). This policy orders machines by

the dynamic power consumption parameter βi. A server with a smaller βi

is listed earlier in the ordered server list. According to the definition of power

efficiency
Pi(λi)

λi
, its dynamic part is

βi
α3

i

×(λi+
1
R̂
)3

λi
. As we can see, the dynamic

power efficiency is not solely determined by βi. This policy is therefore

called pseudo dynamic power based policy.

3.3.3 Server Activation Thresholds

In the previous section we introduced the ordered server list that specifies which

servers to choose when we need to turn on or off machines. This section presents

our threshold-based strategy to decide the optimal number of active servers.

The goal is two-fold. First, an adequate number of servers should be turned

on to guarantee the response time requirement. Second, the number of active

servers should be optimal with respect to the consumed power.

Following our mechanism, to meet the response time requirement, the num-

ber of active servers should increase monotonically with the workload λcluster.

The heavier the workload, the greater the number of active servers required.

It suggests that we turn on more servers only when the current capacity be-

comes inadequate to process the workload. Accordingly N capacity thresholds

Λc1, Λc2, · · · , ΛcN are developed and each Λck corresponds to the maximum work-

load that can be processed by the first k servers. According to Equation (3.6), when

a server is operating at its maximum frequency fi max, it can process at most λi max

amount of workload and meet the response time requirement:

λi max = αi fi max −
1

R̂
(3.12)

www.manaraa.com

17

Thus, we have:

Λck =
k

∑
i=1

λi max =
k

∑
i=1

αi fi max −
k

R̂
(3.13)

When the current workload exceeds this threshold Λck, at least k + 1 servers of

the ordered server list have to be activated.

However, the above thresholds may not be optimal with respect to the power

consumption. The power consumed by a server is composed of two parts: the

static part ci and the dynamic part βi f 3
i . When adding an active server, the clus-

ter’s static power consumption increases but its dynamic power consumption may

actually decrease. The reason is that with more active servers to share the work-

load, the workload distributed to each server decreases; consequently, the CPU

operating frequency fi required for each server may get smaller, which could lead

to a reduced dynamic power consumption of the cluster.

To derive the optimal-power threshold, scenarios when activating k+ 1 servers

is better than activating k servers are identified. In such scenarios, k servers are

adequate to handle the workload. But if we activate k + 1 servers, the system

consumes less power.

We assume that the optimal power consumption using the first k servers to

handle λcluster workload, where λcluster ∈ (0, Λck], is Ĵk(λcluster) (see Section 3.3.4

for Ĵk(λcluster)’s derivation). It is a monotonically increasing function of λcluster.

We analyze the following equation:

Ĵk(λcluster) = Ĵk+1(λcluster) (3.14)

According to characteristics of functions Ĵk(λcluster) and Ĵk+1(λcluster) (see Sec-

tion 3.3.4), there is at most one solution for Equation (3.14). If such a solution

www.manaraa.com

18

λ′
cluster is found, then activating k + 1 servers is more power efficient than activat-

ing k servers when λcluster > λ′
cluster. The proof is as follows. 1) Ĵk(λcluster) is less

than Ĵk+1(λcluster) for small λcluster; 2) functions Ĵk(λcluster) and Ĵk+1(λcluster) in-

crease monotonically with λcluster; and 3) if and only if λcluster = λ′
cluster activating

k or k + 1 servers consumes the same amount of power. Therefore, once λcluster

exceeds λ′
cluster, Ĵk+1(λcluster) becomes less than Ĵk(λcluster), i.e., it becomes more

power efficient to activate k + 1 servers.

Therefore, when there is a solution λ′
cluster ∈ (0, Λck] for Equation (3.14), we

find the optimal-power threshold Λpk = λ′
cluster where activating k + 1 servers is

more power efficient than activating k servers when λcluster exceeds this thresh-

old; otherwise, we assign Λpk = −1. After analyzing Equation (3.14) for k =

1, 2, · · · , N − 1, we obtain another series of thresholds: optimal-power thresholds

Λp1, Λp2, ..., Λp(N−1).

By combining capacity and optimal-power thresholds, we get the server acti-

vation thresholds Λk, k = 1, 2, · · · , N:

Λk =

{

Λck for Λpk = −1 or k = N

Λpk for Λpk 6= −1

We use the symbol CP to denote the above Capacity-Power-based strategy. For

comparison, a baseline CApacity-only strategy, denoted as CA, is also investi-

gated, for which Λk = Λck. In the Activate All policy (AA), no server activation

thresholds are needed.

3.3.4 Workload Distribution

Last two sections solved the problem of deciding how many and which back-end

servers should be activated for a given workload. This section proposes a strategy

to optimally distribute the workload among active servers.

www.manaraa.com

19

According to Section 3.3.1, if the first k servers of the ordered server list are

activated, the optimization problem becomes:

minimize
Jk =

k

∑
i=1

[ci + βi × (
λi

αi
+

1

αiR̂
)3] (3.15)

subject to:

∑
k
i=1 λi = λcluster

0 ≤ λi ≤ αi fi max − 1
R̂

, i = 1, 2, ..., k

(3.16)

The analysis is to find optimal solutions for all Jk, k = 1, 2, · · · , N.

To solve the optimization for Jk, we first assume that all k back-end servers are

running below their maximum capacities, i.e, 0 ≤ λi < αi fi max − 1
R̂

, i = 1, 2, ..., k.

Since the second constraint of the problem is satisfied, the optimization becomes:

minimize
Jk =

k

∑
i=1

[ci + βi × (
λi

αi
+

1

αiR̂
)3] (3.17)

subject to:

k

∑
i=1

λi = λcluster (3.18)

According to Lagrange’s Theorem [14], the first-order necessary condition for Jk’s

optimal solution is:

∃δ, Jk(λi , δ) =
k

∑
i=1

[ci + βi × (λi
αi
+ 1

αiR̂
)3]

+δ(
k

∑
i=1

λi − λcluster)
(3.19)

and its first-order derivatives satisfy

∂Jk(λi,δ)
∂λi

= 0, i = 1, ...k

∂Jk(λi,δ)
∂δ = 0

(3.20)

www.manaraa.com

20

Solving the above condition, we obtain the optimal workload distribution λi, i =

1, ..., k as:

λi =
αi(λcluster +

k
R̂
)

k

∑
j=1

αj

√

αj

βj

√

αi

βi
− 1

R̂
(3.21)

The corresponding power consumption is:

Ĵk =
k

∑
i=1

ci +
(λcluster +

k
R̂
)3

(
k

∑
j=1

αj

√

αj

βj
)2

(3.22)

The above solution is optimal when all k back-end servers are running below their

maximum capacities. That is, when λi (Equation (3.21)) satisfies the constraint

that 0 ≤ λi < αi fi max − 1
R̂

, i = 1, 2, ..., k. Thus, the above condition holds true only

for light cluster workloads. As λcluster increases, servers start to be saturated one

after another. That is, a server’s shared workload λi reaches its maximum level

αi fi max − 1
R̂

where we have:

λi =
αi(λcluster +

k
R̂
)

k

∑
j=1

αj

√

αj

βj

√

αi

βi
− 1

R̂

= αi fi max −
1

R̂
(3.23)

Solving Equation (3.23) for system workload λcluster, we get:

λcluster = fi max

√

βi

αi

k

∑
j=1

αj

√

αj

β j
− k

R̂
(3.24)

This result seems to indicate that among the k active servers, the one with a

smaller value of fi max

√

βi
αi

reaches its full capacity earlier as λcluster increases. We

therefore order the k servers by their fi max

√

βi
αi

values and generate the saturated

www.manaraa.com

21

order list. When a server gets saturated, its shared workload should not be in-

creased any more. Otherwise its response time Ri will violate the requirement. As

a result, after the first server’s saturation, i.e., the saturation of the first server on

the saturated order list, we have the server’s shared workload as λ1 = α1 f1 max − 1
R̂

and the system workload as:

λcluster = f1 max

√

β1

α1

k

∑
j=1

αj

√

αj

β j
− k

R̂
(3.25)

The workload distribution problem becomes:

minimize

Jk =
k

∑
i=2

[ci + βi × (
λi

αi
+

1

αiR̂
)3]

+ (c1 + β1 f 3
1 max) (3.26)

subject to:

k

∑
i=2

λi = λcluster − (α1 f1 max −
1

R̂
) (3.27)

Here, servers are indexed following their saturated order list. Similar to Equa-

tions (3.17) and (3.18), we solve the above problem by applying Larange’s Theorem

and get the following optimal solution for λi, i = 2, 3, · · · , k:

λi =
αi(λcluster − α1 f1 max +

k
R̂
)

k

∑
j=2

αj

√

αj

βj

√

αi

βi
− 1

R̂
(3.28)

The corresponding power consumption is:

Ĵk =
k

∑
i=1

ci +
(λcluster − α1 f1 max +

k
R̂
)3

(
k

∑
j=2

αj

√

αj

βj
)2

+ β1 f 3
1 max (3.29)

Again, we let λi (Equation (3.28)) be equal to the maximum workload αi fi max − 1
R̂

www.manaraa.com

22

and solve for λcluster. We get:

λcluster = fi max

√

βi

αi

k

∑
j=2

αj

√

αj

β j
+ α1 f1 max −

k

R̂
(3.30)

This result verifies our hypothesis that servers saturate following the saturated

order list — the smaller the value of fi max

√

βi
αi

, the earlier the server is saturated.

The system workload that starts to saturate the first two servers is:

λcluster = f2 max

√

β2

α2

k

∑
j=2

αj

√

αj

β j
+ α1 f1 max −

k

R̂
(3.31)

We define λm
k as:

λm
k = fm max

√

βm

αm

k

∑
j=2

αj

√

αj

β j
+

m−1

∑
i=1

αi fi max −
k

R̂
(3.32)

In general, when λcluster ∈ [λm
k , λm+1

k), m of the k active servers are saturated.

That is, λi = αi fi max − 1
R̂

, i = 1, 2, · · · , m. The optimization problem becomes:

minimize

Jk =
k

∑
i=m+1

[ci + βi × (
1

αiR̂
+

λi

αi
)3]

+
m

∑
i=1

(ci + βi f 3
i max) (3.33)

subject to:

k

∑
i=m+1

λi = λcluster −
m

∑
j=1

(αj f j max −
1

R̂
) (3.34)

and the optimal solution is :

www.manaraa.com

23

λi =

αi(λcluster −
m

∑
j=1

αj f j max +
k
R̂
)

k

∑
j=m+1

αj

√

αj

βj

√

αi

βi
− 1

R̂

for i = m + 1, m + 2, · · · , k (3.35)

Ĵk =
k

∑
i=1

ci +

(λcluster −
m

∑
j=1

αj f j max +
k
R̂
)3

(
k

∑
j=m+1

αj

√

αj

βj
)2

+
m

∑
i=1

βi f 3
i max (3.36)

The above solution shows how to optimally distribute workload among active

servers when they are in steady on states. However, since it takes some time

(e.g., tens of seconds) to switch on a server and start software processes on it,

there is a short server switch-on transient stage. During this transient interval,

the to-be-active server cannot process any request yet, thus instead, the workload

is distributed to active servers in proportion to their processing capacities. This

temporary workload distribution method balances the load and avoids overload-

ing the most power-efficient server during the transient stage. Once the transition

is complete and the server is active and ready to process requests, the algorithm

again begins to optimally distribute workload based on the aforementioned opti-

mal solution.

Baseline Algorithms. We denote our algorithm proposed above as OP, the

OPtimal workload distribution. For comparison, the following three baseline al-

gorithms are investigated:

• RANdom (uniform) workload distribution (RAN). In this strategy, every in-

www.manaraa.com

24

coming request is distributed to a randomly picked active server.

• CApacity based workload distribution (CA). This strategy distributes the

workload among active servers in proportion to their processing capacities,

i.e. αi fi max.

• One-by-One Saturation policy (OOS). This policy distributes requests fol-

lowing a default order. For each incoming request, we pick the first active

server that is not saturated to process it.

3.3.5 Algorithm Nomenclature

The previous three subsections have respectively presented different strategies

for deriving the ordered server list, server activation thresholds and workload distribu-

tion. By following the proposed framework (Section 3.3.1), we could generate

many different algorithms by combining different strategies for the three mod-

ules, for instance, TP-CP-OP, AA-AA-CA and SP-CA-CA. The nomenclature of

the algorithms includes three parts corresponding to the three design decisions.

The first part denotes the adopted strategy for deciding the ordered server list: TP,

AA, RAN, SP or PDP. The second part represents the choice for deriving server

activation thresholds: CP, CA or AA. In the third portion of the name, OP, RAN, CA

or OOS denotes the workload distribution strategy. However, not all combinations

are feasible. For instance, CP can only be combined with OP and AA is combined

with AA.

3.4 Performance Evaluation

In the previous section, we proposed various threshold-based strategies for the

power management of heterogeneous soft real-time clusters. In this section, we

www.manaraa.com

25

Server fi max ci βi αi

1 1.8 44 2.915 495.00

2 2.4 53 4.485 548.75

3 3.0 70 2.370 287.00

4 3.4 68 3.206 309.12

Table 3.1: Parameters of a 4-Server Cluster

experimentally compare their performance relative to each other, to an existing

approach [42], and to the optimal solution.

A discrete simulator has been developed to simulate a range of heterogeneous

clusters that are compliant to models presented in Section 3.1. The server on/off

switch overheads are also simulated. There are two types of switch overheads:

time overhead and power overhead. It takes some time, assumed to be 10 seconds,

to turn on/off a server, during which interval no service can be provided by the

server. To simulate the power overhead, we assume in the switch on/off interval,

a server Si consumes power at the maximum level, i.e., Pi = ci + βi f 3
i max.

Cluster Configuration. The following clusters are simulated:

• Cluster1. First, we simulate a small cluster that consists of 4 back-end

servers. They are all single processor machines: server 1 has an AMD Athlon

64 3000+ 1.8GHz CPU; server 2 has an AMD Athlon 64 X2 4800+ 2.4GHz

CPU; server 3 has an Intel Pentium 4 630 3.0GHz CPU and server 4 has an

Intel Pentium D 950 3.4GHz CPU. To derive server parameters, experimental

data from [42, 11, 21] are referred. Table 3.1 lists the estimated parameters.

In addition, we assume that the processors only support discrete frequen-

cies, i.e., a processor’s frequency can only be set to one of ten discrete levels

in the range [fi min, fi max], where fi min = 25% fi max.

www.manaraa.com

26

• Cluster2. Second, we simulate a large cluster that has 128 back-end servers

of 8 different types.

In this thesis, we only report simulation results on Cluster1. Please refer to [47]

for similar simulation results that have been obtained for the other case.

Workload Generation. A request is specified by a tuple (Ai, Ei), where Ai is its

arrival time and Ei is its execution time on a default server when it is operating

at its maximum frequency.

0 500 1000 1500 2000 2500 3000
500

1000

1500

2000

2500

3000

3500

4000

Simulation Time (Sec)

A
v
e
r
a
g
e

R
e
q
u
e
s
t

R
a
t
e

(
R
e
q
/
S
e
c
)

(a) Workload1

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Simulation Time (Sec)

A
v
e
r
a
g
e

R
e
q
u
e
s
t

R
a
t
e

(
R
e
q
/
S
e
c
)

(b) Workload2

Figure 3.2: Average Request Rate

• To generate requests for Workload1, we assume that the inter-arrival time

follows a series of exponential distributions with a time-varied mean of

1
λcluster(t)

. As shown in Figure 3.2a, we simulate a workload λcluster(t) that

gradually increases from requiring 20% to 90% of the cluster capacity. Re-

quest execution time Ei is assumed to follow a gamma distribution with a

specified mean of 1
µ′

1
, where µ′

1 = 891req/sec is the default server’s maxi-

mum processing rate of this workload. The request execution time varies on

different servers and is assumed to be reciprocally proportional to a server’s

capacity. Assuming small requests, their desired average response time R̂ is

set at 1 second.

www.manaraa.com

27

• Workload2 is generated according to empirical distributions based on a

server log file [1]. From the log file, we extract request arrival time and re-

quested file size information. The log file records all requests that arrived in

a day. To expedite the simulation, we replay these requests faster than real-

time, i.e., we have proportionally reduced request interarrival times. The

average request execution time is assumed to be 1
µ′

2
, where µ′

2 = 541req/sec

is the default server’s maximum processing rate of this workload. In ad-

dition, we assume request execution time Ei grows linearly with requested

file size. To simulate same application accesses, we choose requests with

modest execution time variances, i.e., those 95% requests that access files of

the majority types (e.g., html, jpg, gif, javascript and flash files). Figure 3.2b

shows the generated request rate λcluster(t).

By offline analysis of cluster server parameters, a threshold-based algorithm

derives the ordered server list, server activation thresholds and workload distribution

formulas. Once these three modules are deployed on the head node, the cluster

is able to handle different levels of workload. Each simulation lasts 3000 seconds

and periodically, i.e., every 30 seconds, the system measures the current workload

and predicts the average request rate λcluster(t) for the next period. We adopt a

method proposed in [22] for the workload prediction. Based on the range the

predicted λcluster(t) falls into, the corresponding power management decisions

on server on/off (xi) and workload distribution (λi) are followed. According to

λi, the back-end server DVS mechanism decides the server’s frequency setting

fi. Since a CPU only supports discrete frequencies, we approximate the desired

continuous frequency fi by switching the CPU frequency between two adjacent

discrete values, e.g., to approximate 2.65GHz frequency, during the 30-second

www.manaraa.com

28

sampling period, the CPU frequency is first set at 2.4GHz for 11.25 seconds and

then at 2.8GHz for 18.75 seconds. For OPT-SOLN algorithm, to make its solution

closer to the optimal, it is assumed to know the true λcluster(t) accurately. To

evaluate algorithm performance, we measure two metrics: average response time

and power consumption. Curves are used to show the average response time,

while for clarity, we use bar figures to illustrate the power consumption.

The first group of simulations (Sections 3.4.1, 3.4.2 and 3.4.3) simulate Cluster1

with the synthetic Workload1. We evaluate the effects of major design choices and

the corresponding algorithms in Sections 3.4.1 and 3.4.2. Section 3.4.3 compares

threshold-based algorithms with an existing approach [42] and with the optimal

solution. In Sections 3.4.4 and 3.4.5, we simulate Cluster1 with the empirical

Workload2 and experimentally evaluate the feedback control mechanism’s impact

on the back-end server DVS.

3.4.1 Effects of Ordered Server List

We first evaluate an algorithm’s performance with respect to different policies in

deciding the ordered server list. Our heuristic: Typical Power based policy (TP) and

baseline strategies: Activate All policy (AA), Static Power based policy (SP) and

Pseudo Dynamic Power based policy (PDP) are compared. We evaluate the fol-

lowing algorithms: TP-CA-CA, AA-AA-CA, SP-CA-CA and PDP-CA-CA. Except

for AA-AA-CA, which activates all servers, the other algorithms only differ in the

ordered server list but have the same capacity based (CA) strategies for deciding

server activation thresholds and workload distribution. Figures 3.3 and 3.4 show the

simulation results.

Since algorithms adopt capacity based (CA) strategies for deciding server activa-

tion thresholds and workload distribution, we can see from Figure 3.3 they all achieve

www.manaraa.com

29

the response time goal and keep the average response time around 1 second. One

interesting observation is that the Activate All policy (AA) does not decrease the

response time. The reason is on a back-end server, the local DVS mechanism

always sets the CPU frequency at the minimum levels that satisfy the time re-

quirement. Therefore, as long as the desired frequency levels are equal or above

the CPU’s minimum frequency fi min, even though AA policy turns on all back-

end servers, it does not lead to reduced response times. The simulation results

also demonstrate that our approach in approximating a continuous frequency by

switching CPU between its two adjacent supported discrete frequencies works as

expected.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Sampling Period

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
)

TP−CA−CA
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 3.3: Effects of Ordered Server List: Time

In Figure 3.4, we use

a table to list the aver-

age power consumption

achieved by different al-

gorithms over the 100

sampling periods and

bars to show the sampled

power consumptions in

different sampling peri-

ods as cluster workload

changes. Algorithm TP-

CA-CA, built on our Typical Power based policy (TP), always consumes the least

power. It performs especially well at a low/medium cluster request rate when a

good power management mechanism is needed the most. As workload increases,

all back-end servers have to be activated and the algorithms begin to have sim-

ilar performance. From this experiment, we demonstrate that the server activa-

www.manaraa.com

30

tion order has a big impact on the power efficiency. When adopting a bad order,

such as that by the Pseudo Dynamic Power based policy (PDP), a high level of

power is consumed. Occasionally, i.e., when λcluster(t) = 2457 or 2747 req/sec, the

Pseudo Dynamic Power based policy (PDP-CA-CA) performs even worse than

the Activate All policy (AA-AA-CA). It shows that under such scenarios activat-

ing more servers consumes less power.

Alg Power (Watt)
Avg Std

TP-CA-CA 264 0.33

AA-AA-CA 319 0.11

SP-CA-CA 269 0.43

PDP-CA-CA 306 0.39

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2111 2457 2747 3029 3353

Po
we
r
Co
ns
um
pt
io
n
(W
at
t)

Request Rate (Req/Sec)

TP-CA-CA
AA-AA-CA
SP-CA-CA

PDP-CA-CA

Figure 3.4: Effects of Ordered Server List: Power

3.4.2 Effects of Activation Thresholds and Workload

Distribution

In this subsection, to evaluate polices that decide server activation thresholds and

workload distribution we simulate the following algorithms: RAN-CP-OP that is

based on our heuristic and RAN-CA-OOS, RAN-CA-CA and RAN-CA-RAN base-

line algorithms. For RAN-CP-OP, the last two modules are combined together

since optimal-power thresholds depend on the optimal workload distribution.

Therefore we evaluate the two polices together. For these algorithms, a common

RANdomly generated ordered server list is used.

Figures 3.5 and 3.6 show the simulation results. From Figure 3.5, we can

see that algorithm RAN-CA-RAN fails to provide response time guarantee: in

www.manaraa.com

31

multiple sampling periods, the average response time significantly exceeds the 1

second target. The reason is for a heterogeneous cluster, this RANdom (uniform)

workload distribution does not prevent a server from being overloaded. Even

though the CApacity-based server activation policy has ensured that the cluster

capacity is adequate to handle the workload, the bad workload distribution still

causes the QoS violation. Since all other algorithms consider a server’s capacity

for workload distribution, they meet the time requirement.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sampling Period

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
)

RAN−CP−OP
RAN−CA−OOS
RAN−CA−CA
RAN−CA−RAN

Figure 3.5: Effects of Activation Thresholds and Work-
load Distribution: Time

Figure 3.6 illustrates

the power consumption

results. Under all scenar-

ios, the algorithm based

on our heuristic, RAN-

CP-OP, always consumes

the least power. In

addition, unlike other

three algorithms, RAN-

CP-OP’s power consump-

tion increases monotoni-

cally and smoothly with the workload. The main reasons behind these results

are as follows.

More Servers but Less Power. As discussed in Section 3.3.3, more servers do

not always consume more power. Our Capacity-Power-based strategy (CP) takes

this factor into account. For example, when λcluster(t) = 929 req/sec, the baseline

CApacity-only based algorithms activate one server and when λcluster(t) = 2747

req/sec, they activate three servers. In contrast, our algorithm RAN-CP-OP turns

on two and four servers respectively under these two scenarios. It leads to much

www.manaraa.com

32

less power consumptions. When λcluster(t) increases to 2800 req/sec, RAN-CA-

CA algorithm turns on the forth server. The result is that, with four servers its

power consumption for a heavier workload (say 3029 req/sec) is less than that of

three servers for a lighter workload (say 2747 req/sec).

Optimal Workload Distribution. Our heuristic forms and solves the workload

distribution as an optimization problem. The simulation results demonstrate that

the resultant distribution is indeed optimal. In Figure 3.6, When λcluster(t) is

greater than 2800 req/sec, four algorithms all activate the same number of servers.

But our algorithm RAN-CP-OP still consumes the least power due to its optimal

distribution of the workload. Unlike RAN-CP-OP, algorithm RAN-CA-OOS ex-

periences a sudden change of the consumed power whenever a new server is

activated. For this One-by-One Saturation strategy (OOS) on workload distribu-

tion, after adding an active server, its static power consumption increases but its

dynamic power consumption does not decrease because it does not reduce the

workload distributed to the other servers. Thus, their dynamic power consump-

tions do not decrease. As we observe, this strategy leads to the highest power

consumptions.

Alg Power (Watt)
Avg Std

RAN-CP-OP 278 0.21

RAN-CA-OOS 364 0.85

RAN-CA-CA 309 0.47

RAN-CA-RAN 307 1.11

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2111 2457 2747 3029 3353

Po
we
r
Co
ns
um
pt
io
n
(W
at
t)

Request Rate (Req/Sec)

RAN-CP-OP
RAN-CA-OOS

RAN-CA-CA
RAN-CA-RAN

Figure 3.6: Effects of Activation Thresholds and Workload Distribution: Power

www.manaraa.com

33

3.4.3 Evaluation of Integrated Algorithms

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Sampling Period

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
)

TP−CP−OP
AA−AA−CA
SP−CA−CA
EE−RT−HSC
OPT−SOLN

Figure 3.7: Integrated Algorithms: Time

This subsection evaluates

the following integrated

algorithms: our heuris-

tic TP-CP-OP and base-

line algorithms: AA-

AA-CA and SP-CA-CA.

When choosing baseline

algorithms for compari-

son, we exclude the “de-

ficient” algorithms, i.e.,

those based on PDP server

activation strategy, RAN or OOS workload distribution policies. In addition, we

compare these threshold-based algorithms with the optimal power management

solution: OPT-SOLN. To obtain the optimal solution, we solve the power manage-

ment problem, i.e., Equations (3.8) and (3.9), for all integer points λcluster in the

range (0, λ̂cluster]. The optimal server on/off (xi) and workload distribution (λi) is

recorded for every possible λcluster. Dynamically, based on the true λcluster(t), the

corresponding optimal configuration is followed. We also implement an existing

algorithm proposed by Rusu et. al. [42]. For that algorithm, since the authors sim-

ply assume servers can be easily ordered with respect to their power efficiencies,

they only provide a very short discussion on the server activation order. There-

fore, to compare that algorithm with our TP-CP-OP algorithm, we focus on the

other two algorithmic decisions on: server activation thresholds and workload

distribution, while adopting the same TP ordered server list for both algorithms.

www.manaraa.com

34

We denote that algorithm as EE-RT-HSC, which is the acronym of the paper’s

title [42].

Alg Power (Watt)
Avg Std

TP-CP-OP 249 0.19

AA-AA-CA 319 0.11

SP-CA-CA 269 0.43

EE-RT-HSC 257 0.49

OPT-SOLN 254 1.38

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2111 2457 2747 3029 3353

Po
we
r
Co
ns
um
pt
io
n
(W
at
t)

Request Rate (Req/Sec)

TP-CP-OP
AA-AA-CA
SP-CA-CA

EE-RT-HSC
OPT-SOLN

Figure 3.8: Integrated Algorithms: Power

Figures 3.7 and 3.8 respectively show the average response time and the power

consumption. As expected, our algorithm TP-CP-OP performs better or as good

as baseline algorithms under all scenarios. On average, TP-CP-OP consumes

28.1% and 8% less power than AA-AA-CA and SP-CA-CA respectively. Surpris-

ingly, compared to the results of OPT-SOLN, our heuristic TP-CP-OP leads to an

average of 2% less power consumption. For the simulated workload, OPT-SOLN

algorithm switches on/off back-end servers for a total of 11 times, while our algo-

rithm TP-CP-OP only turns on 3 additional servers at their individual appropriate

moments following the ordered server list. During some sampling periods, OPT-

SOLN algorithm may cause two server on/off switches, for instance, turning off a

low-capacity server while turning on a high-capacity server at the same sampling

period. In Figure 3.8 we observe when λcluster(t) = 2457 req/sec, OPT-SOLN al-

gorithm leads to a quite high power consumption, which is caused by two server

switches in that sampling period. Following the threshold-based approach, our

algorithm minimizes the server on/off overhead, resulting in a smaller power con-

sumption. In comparison with EE-RT-HSC algorithm, on average, our TP-CP-OP

www.manaraa.com

35

algorithm consumes 3.2% less power. By analyzing the experimental data, we no-

tice that these two algorithms switch on/off back-end servers the same number

of times. However, two methods adopted by EE-RT-HSC lower the algorithm’s

power efficiency. First, to avoid overloading the cluster so that a tighter QoS (i.e.,

95% deadline met) can be achieved, the algorithm activates new servers in ad-

vance based on the possible maximum load increase during a monitoring period

(which is set at 5 seconds). This strategy leads to servers being turned on too early,

resulting in more power consumptions. Second, in order to void frequent server

switches, EE-RT-HSC algorithm adds several transition states so that servers are

not turned on/off immediately to improve power efficiency. This method, how-

ever, does not necessarily save power and in many cases, on the contrary, it leads

to more power consumptions.

When implementing EE-RT-HRS, we notice that it is difficult to apply the algo-

rithm to save power for web clusters that have fluctuating workloads. Web traffic

is known to be self-similar [16] and thus has significant variability over a wide

range of time scales. This huge variance makes it hard for the algorithm to esti-

mate the maximum possible load increase per monitoring period. For instance, if

we apply it to handle the empirical workload (i.e., Workload2 that we have gen-

erated based on a web log file), due to the large value of the max load increase,

EE-RT-HRS algorithm will almost turn on all servers at the beginning of the sim-

ulation. As a result, it will consume a quite high level of power. Because of

this deficiency, we choose not to simulate EE-RT-HRS in the next two subsections

where the cluster executes the empirical Workload2.

3.4.4 Empirical Workload Simulation

www.manaraa.com

36

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Sampling Period

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
)

TP−CP−OP
AA−AA−CA
SP−CA−CA
OPT−SOLN

Figure 3.9: Simulation Result of Web Log Based Work-
load: Time

To evaluate algorithms in

a more realistic setting,

for the second group

of simulations (Sections 3.4.4

and 3.4.5), we simulate

the cluster with the em-

pirical Workload2, which

is generated based on a

web log file [1]. Fig-

ures 3.9 and 3.10 show

the simulation results for

the same integrated algo-

rithms that have been an-

alyzed in the previous subsection. From Figure 3.9, we can see, although the

workload does not match the assumed M/M/1 queuing model, TP-CP-OP and

SP-CA-CA algorithms can still satisfy the response time requirement due to the

effective feedback control of DVS. OPT-SOLN violates the time requirement dur-

ing [30, 60] sampling periods because of high server on/off overheads. In these

30 periods, OPT-SOLN turns on/off servers for a total of 15 times. AA-AA-CA

algorithm produces very short response times at the beginning and the end of the

simulation. During those periods, the workload is very low, where λcluster(t) ≈

500 req/sec. However, AA-AA-CA algorithm always turns on all servers. With

such low request rates, even when all processors are set at their minimum fre-

quencies fi min, the total cluster capacity is still bigger than needed to satisfy the 1

second response time requirement. That explains why we observe lower response

times at the beginning and the end of the simulation.

www.manaraa.com

37

Alg AvgPower (Watt)

TP-CP-OP 174

AA-AA-CA 283

SP-CA-CA 186

OPT-SOLN 181

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

252 293 388 1676 2161 1657 2028 1284 832 524

Po
we
r
Co
ns
um
pt
io
n
(W
at
t)

Request Rate (Req/Sec)

TP-CP-OP
AA-AA-CA
SP-CA-CA

OPT-SOLN

Figure 3.10: Simulation Result of Web Log Based Workload: Power

Figure 3.10 again demonstrates that our algorithm TP-CP-OP achieves the best

power efficiency. It outperforms baseline algorithms to a large extent. Further-

more, on average, TP-CP-OP consumes 4% less power than OPT-SOLN because

the latter leads to a total of 28 server on/off switches, while our heuristic TP-

CP-OP only causes 12 switches. There are 9 sampling periods when OPT-SOLN

algorithm causes 2 server switches and 10 sampling periods when it has 1 switch.

During the period when λcluster(t) = 524 req/sec, our algorithm TP-CP-OP does

not cause any server switch, while OPT-SOLN leads to 1 switch. That is why

during that period OPT-SOLN algorithm consumes more power than TP-CP-OP.

3.4.5 Effects of Feedback Control

As described in Section 3.2, to overcome the inaccuracy of the M/M/1 queu-

ing model, we apply an approach that combines feedback control with queuing-

theoretic prediction for back-end server DVS. This section evaluates the impact

of the feedback control. We compare the combined mechanism with a queuing-

theoretic prediction only mechanism where no feedback control of DVS is applied.

Figure 3.11a shows the resultant average response times when the feedback

control is not applied. As we can see, due to the modeling inaccuracy, the re-

www.manaraa.com

38

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Sampling Period

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
)

TP−CP−OP
AA−AA−CA
SP−CA−CA
OPT−SOLN

(a) Time

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

Sampling Period

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

TP−CP−OP
TP−CP−OP−NOFB

(b) Power

Figure 3.11: Effects of Feedback Control

sponse times are no longer around 1 second. In contrast, when the feedback

control is combined with the queuing-theoretic prediction, the average response

times, as shown in Figure 3.9, are kept close to the target. These results demon-

strate that the feedback control mechanism is effective in regulating the response

time. On the other hand, when comparing power consumptions of DVS mech-

anisms with and without feedback control, the differences are negligible. For

illustration, the curves in Figure 3.11b show the power consumption of TP-CP-OP

algorithm with and without DVS feedback control. On average, the difference in

power consumption is only 1.82 Watt and server frequencies differ by 0.0294 GHz.

As we can see, the response time is very sensitive to frequency changes. A small

frequency change can lead to a large variation of response time. Consequently,

to effectively regulate the response time, the feedback control mechanism only

needs to slightly modify the queuing estimated frequency fi and thus leads to

a very small difference in power consumption. These experimental results show

that the queuing model based estimate of fi is very close to the real frequency

setting, which justifies the adoption of queuing estimated fi in the optimization

www.manaraa.com

39

problem formulation (see Section 3.2).

www.manaraa.com

40

Chapter 4

Power-Efficient Workload

Distribution for Virtualized Sever

Clusters

In this chapter, we will introduce the second part of our work. This research

develops a workload distribution algorithm for virtualized server clusters to re-

duce their power consumptions and provide QoS. We extend our previous work

presented in Chapter 3 and deploy the modified algorithm presented in Section

3.3 to a new platforms of virtualized server clusters. Simulation results show the

advantages of our algorithm.

The remainder of this section is organized as follows. Sections 4.1 and 4.2

respectively present the models and state the problem. We discuss the algorithms

in Sections 4.3 and 4.4, and evaluate their performance in Section 4.5.

www.manaraa.com

41

4.1 Models

In this section we present our models and state assumptions related to these

models.

4.1.1 System Architecture

The system architecture is similar to the previous one illustrated by Figure 3.1

in Chapter 3. A cluster consists of a front-end server, connected to N back-

end servers. We assume a typical cluster environment in which the front-end

server does not participate in the request processing and is mainly responsible for

accepting and distributing requests to back-end servers. A virtualized computing

environment is assumed, where there are M online services hosted in virtual

machines (VMs) of the cluster. Virtualization allows a single back-end server to

be shared among multiple performance-isolated VMs. The placement of the M

types of VMs on the N physical servers is given by an N × M matrix X, where

xij = 1 means that the ith physical server hosts a VM for the jth service and xij = 0

indicates that the jth VM is not placed on the ith server.

In a heterogeneous cluster, different back-end servers could have different com-

putational capacities and power efficiencies. In the following, we describe their

models. We assume processors on the back-end servers support dynamic voltage

scaling and their operating frequencies fi could be continuously adjusted in the

range [fi min, fi max]. If a processor only supports discrete frequencies, we follow

an approach similar to that proposed in [48] to approximate the desired contin-

uous frequency setting by switching between two adjacent supported discrete

frequency values. The capacity model relates the CPU operating frequency to the

server’s throughput and the power model describes the relation between the CPU

www.manaraa.com

42

frequency and the power consumption. While our approach could be generalized

to different capacity and power models, in this thesis we assume and use the

following specific models to illustrate our method.

4.1.2 Capacity Model

We assume that the cluster provides CPU-bounded services. This is normal

for many web servers where much of the data are kept in memory [6, 42, 52].

Therefore, to measure the capacity of a back-end server, its CPU throughput is

used as the metric, which is assumed to be proportional to the CPU operating

frequency. That is, the ith server’s throughput, denoted as µi, is expressed as

µi = αi fi, where αi is the CPU performance coefficient. Different servers may

have different values for αi. With the same CPU frequency setting, the higher the

αi the more powerful the server is. For a particular VM on server i, its throughput

depends on its allocated CPU time and its requirement for CPU. That is:

µij =
αi fij

ej
(4.1)

where fij denotes the virtual frequency of the jth VM on the ith server and we

have fi = max(∑M
j=1 xij fij, fi min). ej is the CPU demand factor of the jth service.

The higher ej, the more CPU time is required to process a jth-type request.

4.1.3 Power Model

The power consumption Pi of a server consists of a constant part and a variable

part. Similar to previous work [19, 10, 24], we approximate Pi by the following

function:

www.manaraa.com

43

Pi = ci + βi f
p
i (4.2)

Where ci denotes the constant power consumption of the server. It is assumed

to include the base power consumption of the CPU and the power consumption

of all other components. In addition, the CPU also consumes a power βi f
p
i that is

varied with the CPU operating frequency fi. In the remainder of this thesis, we

use p = 3 to illustrate our approach.

Hence, in the cluster the power consumption of all back-end servers can be

expressed as follows:

J =
N

∑
i=1

(ci + βi f 3
i) (4.3)

Here, for the purpose of differentiation, J is used to denote the cluster’s power

consumption while P denotes a server’s power consumption. Following the afore-

mentioned models, each physical server is specified with five parameters: fi min,

fi max, αi, ci, and βi. To obtain these parameters, only a little performance profiling

is required. As a result, an algorithm designed based on these models has very

low customization costs when deployed to new platforms.

4.2 Power Management Problem

Given a cluster of N heterogeneous back-end servers, each specified with pa-

rameters fi min, fi max, αi, ci, and βi, the objective is to minimize the power con-

sumed by the cluster while satisfying the following QoS requirement: Rij ≈ R̂j,

where Rij and R̂j respectively stand for the average and desired response time of

the jth type of VM. The average response time Rij is determined by the jth VM’s

www.manaraa.com

44

capacity and workload. We use µij =
αi fij

ej
to denote the VM’s capacity and λij, the

VM’s average request rate, to represent the workload. Thus, Rij is a function of

these two parameters, i.e., Rij = g(µij, λij). To enforce Rij ≈ R̂j, we must control

µij =
αi fij

ej
and λij properly. As a result, the power management problem is formed

as follows:

minimize

J =
N

∑
i=1

[ci + βi f 3
i] (4.4)

subject to:

∑
N
i=1 xijλij = λj, j = 1, 2, · · · , M

g(µij, λij) ≈ R̂j, i = 1, 2, · · · , N,

j = 1, 2, · · · , M

fi = max(∑M
j=1 xij fij, fi min) i = 1, 2, · · · , N

fi ≤ fi max, i = 1, 2, · · · , N

(4.5)

where λj is the average request rate for service j. The first set of constraints

guarantees that all requests should be processed by the corresponding virtual

machines and the second set ensures the QoS requirement.

For the power management, the front-end server decides the workload distri-

bution λij for all VMs. On the back-end, each physical server dynamically adjusts

its CPU operating frequency fi in the range [fi min, fi max] and the CPU allocation

fij to VMs. The back-end server ensures the average response time requirement

by adopting an approach, similar to [43], that combines feedback control with

queuing-theoretic prediction.

According to the M/M/1 queuing model, function Rij = g(µij, λij) is approx-

www.manaraa.com

45

imated as follows:

Rij =
1

µij − λij
=

1

αi fij/ej − λij
(4.6)

To guarantee Rij ≈ R̂j, we approximate the proper fij to be:

fij =
ej

αi
(λij +

1

R̂j

) (4.7)

Thus, the power management problem becomes:

minimize

J =
N

∑
i=1

(ci + βi f 3
i) (4.8)

subject to:

∑
N
i=1 xijλij = λj, j = 1, 2, · · · , M

fi = max(∑M
j=1 xij

ej

αi
(λij +

1
R̂j
), fi min), i = 1, 2, · · · , N

fi ≤ fi max, i = 1, 2, · · · , N

(4.9)

To achieve the optimal power consumption and guarantee the average response

time, the key therefore lies in the front-end, i.e., the workload distribution, which

we discuss briefly in the next subsection.

4.3 Workload Distribution Algorithms

In this section, we first present our power-efficient (PE-based) workload distri-

bution. Then, for comparison, two baseline (LB and Capacity-based) algorithms

www.manaraa.com

46

are described.

4.3.1 PE-based Workload Distribution

In the previous subsection, the power management is formed as an optimiza-

tion problem. To analytically solve the problem and get the optimal λij, the work-

load distribution for each VM, however, is not that easy because the optimization

problem has a nonlinear objective function. Therefore, what we will do next is

to find a linear function to approximate and substitute the original objective func-

tion.

When processing the same workload, different servers consume different amounts

of power. Even for one server, when it operates under different frequencies, its

power efficiencies are different. We name this feature as Server Efficiency, which

is related to not only the static physical parameters but also the operating status

of the server. It describes how server performance changes as power consump-

tion varies. In this thesis, we use the derivative of power consumption with respect

to performance to represent the inverse of the Server Efficiency. Server i’s power con-

sumption is Pi = ci + βi f 3
i = ci + βi(

µi
αi
)3 and performance can be represented by

its throughput µi. Thus, server i’s Inverse Efficiency Ei is expressed as follows:

Ei =
dPi

dµi
= 3

βi

αi
fi

2 (4.10)

If we can keep all Ei (i.e.,
√

Ei) as low as possible, the cluster’s power con-

sumption increases the slowest as the workload grows. Based on this idea, we

propose an optimization problem with a linear objective function to approximate

the one formed in Section 4.2. The new optimization problem is as follows:

minimize

www.manaraa.com

47

ν (4.11)

subject to:

√

3βi fi − ν ≤ 0, i = 1, 2, · · · , N

∑
N
i=1 xijλij = λj, j = 1, 2, · · · , M

fi = max(∑M
j=1 xij

ej

αi
(λij +

1
R̂j
), fi min), i = 1, 2, · · · , N

fi ≤ fi max, i = 1, 2, · · · , N

(4.12)

After solving this standard linear programming problem, we obtain the de-

sired workload distribution λij for each VM. We call this method as Power-Efficient

Workload Distribution, PE-based for short.

For comparison purposes, we will next present two baseline workload distri-

bution algorithms.

4.3.2 LB-based Workload Distribution

The first baseline algorithm balances the workload among all physical servers

and equally utilizes them. It tries to keep all physical servers run at similarly low

CPU frequencies with respect to their maximum levels. We model this require-

ment as follows:

minimize

ν (4.13)

subject to:

www.manaraa.com

48

fi
fi max

− ν ≤ 0, i = 1, 2, · · · , N

∑
N
i=1 xijλij = λj, j = 1, 2, · · · , M

fi = max(∑M
j=1 xij

ej

αi
(λij +

1
R̂j
), fi min), i = 1, 2, · · · , N

fi ≤ fi max, i = 1, 2, · · · , N

(4.14)

Solving this linear programming problem gives the workload distribution λij.

We call this method as Load Balancing Workload Distribution, LB-based for short.

4.3.3 Capacity-based Workload Distribution

When distributing workload, baseline algorithm II considers VM’s capacity,

where a VM hosted in a more powerful physical server gets more requests. We

consider the throughput µi as the ith server’s capacity. The workload will be dis-

tributed to VMs in proportion to the capacities of their physical servers. Therefore,

the workload distribution λij can be expressed as follows:

λij =
xijµi

∑
N
i=1 xijµi

λj (4.15)

We name this method as Capacity-based Workload Distribution.

4.3.4 DVS and CPU Resource Allocation

Previous sections present three workload distribution algorithms. No matter

which of these algorithms is adopted by the front-end server, back-end servers al-

ways use the same dynamic voltage scaling (DVS) mechanism. Based on M/M/1

queuing model, a back-end server’s CPU frequency fi should be set at ∑
M
j=1 xij fij,

where fij =
ej

αi
(λij +

1
R̂j
). This approximation, however, may introduce modeling

www.manaraa.com

49

inaccuracy. To overcome this inaccuracy, we use feedback control to adjust the

frequency.

Applying control theory, we design a feedback control loop for each virtual

machine VMij. In the control loop, the desired response time R̂j is the set point

and the measured response time Rij is the controlled variable. Their difference

dij[k] = Rij[k] − R̂j is computed at each sampling period k and passed to a PI

controller. Based on this input, the controller determines the virtual frequency

adjustment ∆ fij[k] for each VM. That is, we combine the feedback control output

with the queuing theoretic prediction: the desired CPU resource allocation be-

comes f ′ij[k] = fij + ∆ fij[k], where fij =
ej

αi
(λij +

1
R̂j
) is the queuing theory based

prediction. Therefore, the server’s CPU frequency setting is:

fi[k] =

fi min, if ∑
M
j=1 xij f ′ij[k] < fi min

fi max, if ∑
M
j=1 xij f ′ij[k] > fi max

∑
M
j=1 xij f ′ij[k], otherwise

and it is shared by VMs with the following weights:

wij[k] =
xij f ′ij[k]

∑
M
m=1 xim f ′im[k]

, j = 1, · · · , M (4.16)

i.e., the actual amount of CPU resource allocated to a VM at the kth sampling

period is f ∗ij [k] = wij[k] fi [k].

4.4 Admission Control Algorithms

In the previous section, three workload distribution methods are described. These

methods can meet the QoS requirement only if the cluster is not overloaded. To

ensure the QoS, we, therefore, also need to design admission control algorithms

www.manaraa.com

50

to avoid overloading the cluster. Since PE and LB-based methods follow the same

workload constraints (i.e., ∑
N
i=1 xijλij = λj, fi = max(∑M

j=1 xij
ej

αi
(λij +

1
R̂j
), fi min),

and fi ≤ fi max), their corresponding admission control algorithms are the same.

In section 4.4.1, we present an admission control algorithm that is applicable to

these two methods. The admission control algorithm for the capacity-based work-

load distribution is described in section 4.4.2.

4.4.1 PE and LB-based Admission Control

Unlike a single-service cluster, whose admission control algorithm simply rejects

extra requests to keep the demand equal to the cluster capacity, the algorithm for

a virtualized multiple-service cluster is much more complicated. In some cases,

overloads are caused not by the inadequate cluster capacity but by the insufficient

placement of some VM services. Feasibility analysis is thus needed to identify

overloaded services.

Feasibility Analysis. Given a group of services Gk, we compute their total

workload demand dk and compare it with the maximum physical server capacity

Ĉk that can be used by these services. If the capacity is smaller than the demand

(i.e., Ĉk < dk), we find an overloaded group of services. The detailed procedure is

as follows.

Assume there are m services in Gk and their VMs are hosted on n physical

servers. Without loss of generality, they are assumed to be the first m services and

the first n servers. Thus, the maximum physical server capacity that can be used

by Gk is:

Ĉk =
n

∑
i=1

αi fi max (4.17)

www.manaraa.com

51

The total workload demand of Gk’s m services is:

dk =
m

∑
j=1

ejλj (4.18)

Their difference Êk = max(dk − Ĉk, 0) indicates how overloaded Gk is. It de-

notes the amount of workload that needs to be rejected for this group of services.

Next, we explain how our algorithm divides this Êk amount of workload rejection

among the m services.

Here, we introduce a new concept called the capacity quota of a service. We

assume that the placement of VMs implies capacity quotas allocated to services.

A service with more VM instances is assumed to have a larger capacity quota.

The capacity quota qj is calculated as follows:

qj =
n

∑
i=1

xij
µi

si
(4.19)

where si denotes the number of different VMs hosted on server i. In the above, we

have assumed that the server capacity quota µi = αi fi max is shared fairly among

hosted services. When we need to reject Êk amount of workload, qj will be used to

calculate the share of rejection for each service. The more extra workload a service

has, i.e., the larger (ejλj − qj) is, the more workload rejection it has. However,

simply rejecting the extra workload of all services does not work, because in most

cases not all services exceed their quotas. To avoid high reject ratio and low

system utilization, we instead divide the Êk amount of workload rejection among

overloaded services as follows:

δj =

0 if qj ≥ ejλj

Êk(e jλj−q j)

∑j∈{l|ql<elλl}(e jλj−q j)
if qj < ejλj

www.manaraa.com

52

where j = 1, 2, . . . , m.

If a straightforward approach were followed, we need to carry out the afore-

mentioned analysis and control for every possible service group. For a cluster

serving M services, that means 2M repetitions of the above procedure. This large

time complexity is not acceptable. Therefore, our admission control algorithm

instead follows a reactive and iterative approach, which repeats the procedure

only if the solver repetitively fails to find a feasible solution for the optimization

problem (i.e., Equations (4.11) and (4.12) or Equations (4.13) and (4.14)). That is,

when the optimization solver fails for the first time. We start the analysis and

control procedure for the first group G1 of services (i.e., the group that includes

all M services). If cutting the workload for G1 resolves the overload situation and

makes the optimization problem solvable, we are done with the admission con-

trol. Otherwise, the procedure is repeated for the next largest group that remains

to be tested. Based on our experience, the overload is often eliminated after only

2 or 3 iterations.

4.4.2 Capacity-based Admission Control

The previous subsection describes PE and LB-based admission control algorithm.

In this subsection, we present the admission control strategy for the capacity-

based workload distribution.

According to the capacity-based algorithm (see Section 4.3.3), the total work-

load demand distributed to server i is:

µ′
i =

M

∑
j=1

ejλij =
M

∑
j=1

ej

xijµi

∑
N
i=1 xijµi

λj (4.20)

while server i’s total capacity is:

www.manaraa.com

53

µi = αi fi max (4.21)

Their difference Êi = max(µ′
i − µi, 0) is the amount of extra workload that needs

to be rejected for server i. To achieve that, the reject ratio of service j should be:

tj = max{
xijÊi

µ′
i

|1 ≤ i ≤ N} (4.22)

that is, only (1 − tj)λj amount of requests should be admitted for service j.

4.5 Performance Evaluation

This section evaluates the performance of the proposed algorithms in our second

work.

Virtualized Cluster Configuration. A discrete simulator has been developed

to simulate heterogeneous virtualized clusters that are compliant to models pre-

sented in Section 4.1. We simulate the following clusters:

• Cluster1. First, we simulate a cluster that consists of 4 back-end servers. To

derive server parameters, experimental data from [42, 11, 21] are referred.

Table 4.1 lists the estimated server parameters. In addition, we assume

that the processors only support discrete frequencies, i.e., a processor’s fre-

quency can only be set to one of ten discrete levels in the range [fi min, fi max],

where fi min = 25% fi max. This cluster is assumed to provide 4 different ser-

vices.

• Cluster2. Second, we simulate a cluster that has 16 back-end servers of 4 dif-

ferent types, whose parameters are the same as those listed in Table 4.1. The

www.manaraa.com

54

Server fi max ci βi αi

1 1.8 44 2.915 495.00

2 2.4 53 4.485 548.75

3 3.0 70 2.370 287.00

4 3.4 68 3.206 309.12

Table 4.1: Parameters of 4 Types of Server

processors only support discrete frequencies, i.e., a processor’s frequency

can only be set to one of ten discrete levels in the range [fi min, fi max], where

fi min = 25% fi max. This cluster is assumed to provide 16 different services.

Virtual Machine Placement. Another key configuration is on the placement of

VMs. A VM placement can be defined in terms of the total number of VMs, their

types and their distribution among physical servers. We assume no two VMs in

a physical server are the same. Thus, a physical server can host up to 4 VMs

in Cluster1 and up to 16 VMs in Cluster2. It is expected that algorithms could

perform differently under different VM placements. Thus, to fairly compare al-

gorithms, we often evaluate their performance under serval different placements.

In paper [49], we investigates the effects of VM placement on algorithm perfor-

mance.

Workload Generation. A request is specified by a tuple (Ai, Ei), where Ai is the

arrival time and Ei is the execution time on the default server, i.e., server 1, when

it is operating at its maximum frequency. 4 and 16 request streams are generated

for Cluster1 and Cluster2 respectively.

To generate requests for service j, we assume their inter-arrival time follows a

series of exponential distribution with a time varied mean 1
λj[k]

. In Sections 4.5.1

and 4.5.2, we simulate cases where a cluster is not overloaded. As illustrated in

Figure 4.1, the total workload of Cluster1 (i.e., λcluster[k] = ∑j=1 4λj[k]) changes

www.manaraa.com

55

Service ej R̂j

1 1 0.5
2 2 0.9
3 3 1.4
4 4 2.0

Table 4.2: Cluster1: Service Parameters

in the range [10%, 90%] of the cluster capacity. Similar workload patterns are

generated for Cluster2. In paper [49], we also generate overloaded workloads,

where the total workload sometimes reaches 2.1 times of the cluster capacity.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Sampling Period

R
eq

ue
st

s
P

er
 S

ec
on

d

Service 1
Service 2
Service 3
Service 4

Figure 4.1: Average Request Rate

Request execution time Ei is assumed to follow exponential distribution, whose

average is
ej

µ1
(i.e.,

ej

α1 f1 max
) for service j. Table 4.2 illustrates the parameters of the 4

services in Cluster1, including CPU demand factor ej and average response time

target R̂j.

Each simulation lasts 3000 seconds and periodically, i.e., every 30 seconds, the

system measures the current workloads and predicts the average request rates

λj[k] for the next period. We adopt a method proposed in [22] for the work-

www.manaraa.com

56

load prediction. Based on the predicted rates λj[k], the corresponding workload

distribution (i.e., λij[k]) are derived by the algorithm. According to λij[k], the back-

end server DVS mechanism decides the server’s frequency setting fi[k]. Since a

CPU only supports discrete frequencies, we approximate the desired continuous

frequency fi[k] by switching the CPU frequency between two adjacent discrete

values, e.g., to approximate 2.65GHz frequency, during the 30-second sampling

period, the CPU frequency is first set at 2.4GHz for 11.25 seconds and then at

2.8GHz for 18.75 seconds. To evaluate algorithm performance, we measure two

metrics: average response time and power consumption.

4.5.1 Non-Overloaded Cluster1

This section evaluates the performance of workload distribution algorithms in

Cluster1. We choose a virtual machine placement where there are 2 VMs on

each physical server and each service has 2 corresponding VM instances. As

mentioned, moderate workload is generated, which does not overload the cluster.

Figure 4.2 presents the cluster power consumption, which demonstrates that our

PE-based workload distribution algorithm consumes the least power in all sam-

pling periods. We illustrate the resultant average response times in Figures 4.3,

4.4 and 4.5. From the data, we can see that all three algorithms ensure QoS, suc-

cessfully keeping average response times around their targets: 0.5, 0.9, 1.4 and 2

seconds.

4.5.2 Non-Overloaded Cluster2

In this section, we evaluate algorithm performance in Cluster2, where we

choose a VM placement that includes a total of 192 VMs. Experimental data are

www.manaraa.com

57

Alg Power (Watt)
Avg Std

PE-based 274.8 1.31

Capacity-based 289.2 2.99

LB-based 285.2 0.87

10 20 30 40 50 60 70 80 90 100
240

260

280

300

320

340

360

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−based

Figure 4.2: Non-Overloaded Cluster1: Power Consumption

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.3: PE-based Non-Overloaded Cluster1: Average Response Time

similar to those shown in Section 4.5.1. Due to the space limitation, we only illus-

trate the power consumption data in Figure 4.6. Again, the PE-based algorithm

leads to the smallest power consumption.

4.5.3 Effects of Virtual Machine Placement

It is expected that algorithms could perform differently under different VM place-

ments. Therefore, in this section, we investigate the effects of VM placement on

www.manaraa.com

58

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.4: LB-based Non-Overloaded Cluster1: Average Response Time

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.5: Capacity-based Non-Overloaded Cluster1: Average Response Time

www.manaraa.com

59

Alg Power (Watt)
Avg Std

PE-based 1100 3.23

Capacity-based 1201 5.45

LB-based 1144 2.78

0 20 40 60 80 100
1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−basd

Figure 4.6: Non-Overloaded Cluster2: Power Consumption

algorithm performance.

The first experiment studies how the VM placement affects the feasibility of

the workload distribution. Since PE and LB-based algorithms share the same

workload constrains, scenarios where they have feasible solutions are the same.

Thus, in this experiment, we compare PE & LB-based algorithms with capacity-

based algorithm. We simulate Cluster1 with 19 different workload levels, where

the total workload grows 5% each time from 10% to 100% of the cluster capacity.

Since Cluster1 is composed of 4 physical servers and provides 4 services, there

could be at most 164, i.e., 65536 number of different VM placements. We only

test those qualified placements where each physical server has at least 2 VMs and

each service has at least 2 corresponding VMs. For each of the 19 workload lev-

els, we simulate the workload distribution algorithms subject to the 7342 number

of qualified VM placements. The percentage of placements where an algorithm

successfully finds a feasible solution is shown in Figure 4.7. From the figure, we

can see that, when the workload level is below 10, all algorithms can find feasible

workload distribution solutions under all VM placements. As the workload level

increases, the capacity-based algorithm fails to find a feasible solution for an in-

creasingly large portion of placements. On the contrary, the feasibility ratio of the

other two algorithms still keeps stable until workload level 16. These data show

www.manaraa.com

60

that unlike the capacity-based algorithm, with the PE or LB-based algorithm, the

VM placement has less effect on the effective cluster capacity.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workload Level

F
ea

si
bi

lit
y

R
at

io

PE&LB−based
Capacity−based

Figure 4.7: Feasibility of Algorithms under Different VM Placements

Next, we evaluate how VM placement affects the power consumption. This

experiment runs on Cluster2. For each algorithm, we simulate the same workload

under 4 different VM placement groups. Placement groups are distinguished

by the total number of VMs, where placements with the same total number of

VMs fall into one group. We choose 4 groups whose placements have 128, 176,

192 and 240 VMs respectively. From each group, 10 placements are randomly

picked. We test how an algorithm performs under these placements. For each

sampling period, we calculate the resultant power consumption averaged among

each placement group. Figures 4.8, 4.9 and 4.10 respectively show the results for

PE, LB and capacity-based algorithms. We can see that with the PE or LB-based

algorithm, the resultant power consumption is insensitive to the VM placements.

Despite that different placement groups have different numbers of VMs, their

www.manaraa.com

61

average power consumptions are pretty much the same. This is not the case for the

capacity-based algorithm, where the difference of power consumption among the

4 groups are obviously much larger. This is because the capacity-based algorithm

employs a workload distribution strategy that is not adaptive to the placement,

while for PE and LB-based algorithms, they always strive to find the most power-

efficient or balanced workload distribution based on the current placement.

A point worthy of notice: these figures again provide strong evidence that the

PE-based workload distribution saves power significantly.

Num.of VMs Power (Watt)
Avg Std

128 1107 4.15

176 1101 3.20

192 1101 3.23

240 1102 3.17

0 20 40 60 80 100

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

Sampling Period

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

128 VMs
176 VMs
192 VMs
240 VMs

Figure 4.8: PE-based Algorithm: Power Consumption

Num.of VMs Power (Watt)
Avg Std

128 1147 2.67

176 1145 2.95

192 1145 2.55

240 1146 2.78

0 20 40 60 80 100

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

Sampling Period

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

128 VMs
176 VMs
192 VMs
240 VMs

Figure 4.9: LB-based Algorithm: Power Consumption

www.manaraa.com

62

Num.of VMs Power (Watt)
Avg Std

128 1182 8.02

176 1233 7.83

192 1202 7.36

240 1214 6.44

0 20 40 60 80 100

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

Sampling Period

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

128 VMs
176 VMs
192 VMs
240 VMs

Figure 4.10: Capacity-based Algorithm: Power Consumption

Level 1.2 1.5 1.8 2.1

PE & LB-based 0.66% 7.80% 15.90% 23.39%

Capacity-based 3.43% 11.28% 19.09% 26.96%

Table 4.3: Request Reject Ratio under Different Workload Levels

1.2 1.5 1.8 2.1

PE-based 348.4 399.2 420.1 472.2

LB-based 362.4 399.8 440.9 474.7

Capacity-based 357.5 416.4 440.0 470.2

Table 4.4: Power Consumption (Watt) under Different Workload Levels

4.5.4 Admission Control Performance

In this section, we evaluate the corresponding admission control algorithms. When

a cluster is overloaded, the admission control module starts to work. It rejects

some requests to ensure QoS for the remaining requests. We thus use an experi-

ment to evaluate the resultant request reject ratio of the three algorithms.

This experiment runs on Cluster1 with a fixed VM placement. We simulate

each algorithm with 4 different workload levels. For a workload, the ratio of its

peak volume vs. the total cluster capacity is used to represent its level. We test

the following 4 workload levels: 1.2, 1.5, 1.8 and 2.1. The resultant request reject

www.manaraa.com

63

ratios are shown in Table 4.3. Since PE and LB-based algorithms share the same

admission control module, they result in the same reject ratio. Compared with

the capacity-based algorithm, they always reject less requests.

Figures 4.11, 4.12 and 4.13 respectively present the average response time of

the three algorithms subject to the highest workload level 2.1. Since admission

control modules have rejected extra requests, the average response times of ad-

mitted requests are successfully kept around their targets.

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.11: PE-based Overloaded Cluster1: Average Response Time

In Figures 4.14, 4.15, 4.16 and 4.17, we show the power consumption with the

4 workload levels respectively. Our PE-based algorithm still performs the best in

most sampling periods. When request rejection happens, by rejecting the largest

number of requests, the capacity-based algorithm sometimes leads to the least

power consumption. Table 4.4 summarizes the power consumption data. From

Tables 4.3 and 4.4, we conclude that the PE-based algorithm always serves the

largest number of requests with nearly the least amount of power consumption.

www.manaraa.com

64

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.12: LB-based Overloaded Cluster1: Average Response Time

10 20 30 40 50 60 70 80 90 100
0

0.5

0.9

1.4

2

2.5

3

Sampling Period

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
d)

Service 1
Service 2
Service 3
Service 4

Figure 4.13: Capacity-based Overloaded Cluster1: Average Response Time

www.manaraa.com

65

Alg Power (Watt)
Avg Std

PE-based 348.4 2.29

Capacity-based 357.5 3.19

LB-based 362.4 1.87

10 20 30 40 50 60 70 80 90 100

250

300

350

400

450

500

550

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−based

Figure 4.14: Power Consumption - Workload Level 1.2

Alg Power (Watt)
Avg Std

PE-based 399.2 2.64

Capacity-based 399.8 3.67

LB-based 416.4 2.52

10 20 30 40 50 60 70 80 90 100

250

300

350

400

450

500

550

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−based

Figure 4.15: Power Consumption - Workload Level 1.5

www.manaraa.com

66

Alg Power (Watt)
Avg Std

PE-based 420.1 2.55

Capacity-based 440.0 3.18

LB-based 440.9 2.03

10 20 30 40 50 60 70 80 90 100

250

300

350

400

450

500

550

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−based

Figure 4.16: Power Consumption - Workload Level 1.8

Alg Power (Watt)
Avg Std

PE-based 472.2 1.76

Capacity-based 470.2 2.51

LB-based 474.7 1.22

10 20 30 40 50 60 70 80 90 100

250

300

350

400

450

500

550

Sampling Period

C
lu

st
er

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

PE−based
Capacity−based
LB−based

Figure 4.17: Power Consumption - Workload Level 2.1

www.manaraa.com

67

Chapter 5

Conclusion

In this thesis, we first presented a threshold-based method for efficient power

management of heterogeneous soft real-time clusters. Then, in the second part,

we modified this algorithm such that it can be unprecedentedly deployed to a

virtualized server cluster system.

Our methods have two advanced features. First, based on simple but effective

mathematical models, the algorithm leads to low software customization costs

when deployed to varied cluster platforms. Second, the algorithm is developed

upon a solid theoretical foundation, where we integrate optimization, queuing

theory and control theory techniques. By experiments, we compared the pro-

posed algorithm with different baseline algorithms. We studied how these algo-

rithms perform in different clusters, VM placements and workloads. Simulation

results have demonstrated the strong advantages of our algorithms, which incur

low overhead and lead to near-optimal power consumption.

www.manaraa.com

68

Bibliography

[1] ftp://ftp.ircache.net/Traces/DITL-2007-01-09/rtp.sanitized-

access.20070109.gz. 3.4, 3.4.4

[2] Luiz Andre Barroso. The price of performance. Queue, 3(7):48–53, 2005. 1

[3] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet:

The google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

[4] Luciano Bertini, Julius C. B. Leite, and Daniel Mosse. Generalized tardiness

quantile metric: Distributed dvs for soft real-time web clusters. In ECRTS ’09:

Proceedings of the 2009 21st Euromicro Conference on Real-Time Systems, pages

227–236, Washington, DC, USA, 2009. IEEE Computer Society. 1

[5] Ricardo Bianchini and Ram Rajamony. Power and energy management for

server systems. Computer, 37(11):68–74, 2004. 2

[6] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles

Lefurgy, Chandler McDowell, and Ram Rajamony. The case for power man-

agement in web servers. Power aware computing, pages 261–289, 2002. 2, 3.1.2,

4.1.2

[7] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design.

In HICSS ’95: Proceedings of the 28th Hawaii International Conference on System

www.manaraa.com

69

Sciences (HICSS’95), page 288, Washington, DC, USA, 1995. IEEE Computer

Society.

[8] Jeff Chase and Ron Doyle. Balance of power: Energy management for server

clusters. In Proceedings of the Eighth Workshop on Hot Topics in Operating Sys-

tems (HotOS’01), May 2001. 1, 2

[9] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat,

and Ronald P. Doyle. Managing energy and server resources in hosting cen-

ters. In SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating

systems principles, pages 103–116, New York, NY, USA, 2001. ACM Press.

[10] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang,

and Natarajan Gautam. Managing server energy and operational costs in

hosting centers. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMET-

RICS international conference on Measurement and modeling of computer systems,

pages 303–314, New York, NY, USA, 2005. ACM Press. 1, 2, 3.1.3, 4.1.3

[11] Mike Chin. M. chin, desktop cpu power survey, silentpcreview.com, april

2006. 3.4, 4.5

[12] Mike Chin. Desktop cpu power survey. Silentpcreview.com, Apr. 2006.

[13] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Dynamic voltage

and frequency scaling based on workload decomposition. In ISLPED ’04:

Proceedings of the 2004 international symposium on Low power electronics and

design, pages 174–179, New York, NY, USA, 2004. ACM Press.

[14] E.K.P. Chong and Stanislaw H. Żak. An Introduction to Optimization. Wiley,

2001. 3.3.4

www.manaraa.com

70

[15] Michele Colajanni, Valeria Cardellini, and Philip S. Yu. Dynamic load bal-

ancing in geographically distributed heterogeneous web servers. In ICDCS

’98: Proceedings of the The 18th International Conference on Distributed Computing

Systems, page 295, Washington, DC, USA, 1998. IEEE Computer Society.

[16] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web

traffic: Evidence and possible causes, 1996. 3.4.3

[17] Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing. vgreen: a system

for energy efficient computing in virtualized environments. In ISLPED, pages

243–248. ACM, 2009. 2

[18] Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy con-

servation policies for web servers. In Proceedings of the 4th USENIX Symposium

on Internet Technologies and Systems USITS’03, March 2003.

[19] Mootaz Elnozahy, Mike Kistler, and Ram Rajamony. Energy-efficient server

clusters. In Proceedings of the Second Workshop on Power Aware Computing Sys-

tems, February 2002. 1, 2, 3.1.3, 4.1.3

[20] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithm

for dynamic speed-setting of a low-power cpu. In MobiCom ’95: Proceedings

of the 1st annual international conference on Mobile computing and networking,

pages 13–25, New York, NY, USA, 1995. ACM Press.

[21] Tom’s Hardware. Cpu performance charts. Tom’s Hardware, 2006. 3.4, 4.5

[22] John P. Hayes. Self-optimization in computer systems via on-line control:

Application to power management. In ICAC’04: Proceedings of the First Inter-

www.manaraa.com

71

national Conference on Autonomic Computing (ICAC’04), pages 54–61, Washing-

ton, DC, USA, 2004. IEEE Computer Society. 3.4, 4.5

[23] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira Jr., and Ri-

cardo Bianchini. Energy conservation in heterogeneous server clusters. In

PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 186–195, New York, NY, USA, 2005.

ACM Press. 1, 2, 3

[24] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher. Integrating adaptive

components: An emerging challenge in performanceadaptive systems and

a server farm case-study. In IEEE International Real-Time Systems Symposium,

pages 227–238, December 2007. 3.1.3, 4.1.3

[25] Jin Heo, Dan Henriksson, Xue Liu, and Tarek Abdelzaher. Integrating adap-

tive components: An emerging challenge in performance-adaptive systems

and a server farm case-study. In 28th IEEE International Real-Time Systems

Symposium, pages 227–238, Tuscon, AZ, December 2007.

[26] Fabien Hermenier, Nicolas Loriant, and Jean-Marc Menaud. Power manage-

ment in grid computing with xen. Frontiers of High Performance Computing

and Networking, ISPA 2006 Workshops, pages 407–416, 2006. 2

[27] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dy-

namic power management in systems with multiple power-saving states.

Trans. on Embedded Computing Sys., 2(3):325–346, 2003.

[28] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynam-

ically variable voltage processors. In ISLPED ’98: Proceedings of the 1998 in-

www.manaraa.com

72

ternational symposium on Low power electronics and design, pages 197–202, New

York, NY, USA, 1998. ACM Press.

[29] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and

Guofei Jiang. Power and performance management of virtualized computing

environments via lookahead control. In ICAC ’08: Proceedings of the 2008

International Conference on Autonomic Computing, pages 3–12, Washington, DC,

USA, 2008. IEEE Computer Society. 1, 2

[30] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael

Kistler, and Tom W. Keller. Energy management for commercial servers.

Computer, 36(12):39–48, 2003.

[31] L.Mastroleon, N.Bambos, C.Kozyrakis, and D.Economou. Autonomic power

management schemes for internet servers and data centers. In Proceedings of

the IEEE Global Telecommunications Conference (GLOBECOM), 2005. 1, 2

[32] John Markoff and Saul Hansell. Hiding in plain sight, google seeks more

power. New York Times, June 2006.

[33] Bob Monkman. Cluster virtualization – revisiting beowulf-class linux cluster

architectures. HPCwire, August 2006. 1

[34] Tridib Mukherjee, Ayan Banerjee, Georgios Varsamopoulos, Sandeep K. S.

Gupta, and Sanjay Rungta. Spatio-temporal thermal-aware job scheduling

to minimize energy consumption in virtualized heterogeneous data centers.

Comput. Netw., 53(17):2888–2904, 2009. 2

[35] Ripal Nathuji and Karsten Schwan. Vpm tokens: virtual machine-aware

power budgeting in datacenters. In HPDC ’08: Proceedings of the 17th inter-

www.manaraa.com

73

national symposium on High performance distributed computing, pages 119–128,

New York, NY, USA, 2008. ACM. 2

[36] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evalua-

tion of dynamic voltage scaling algorithms. In ISLPED ’98: Proceedings of the

1998 international symposium on Low power electronics and design, pages 76–81,

New York, NY, USA, 1998. ACM Press.

[37] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for

low-power embedded operating systems. In ACM Symposium on Operating

Systems Principles, pages 89–102, 2001.

[38] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing and unbal-

ancing for power and performance in cluster-based systems. In Proceedings

of the International Workshop on Compilers and Operating Systems for Low Power,

May 2001. 1, 2

[39] Eduardo Pinheiro and Ricardo Bianchini. Energy conservation techniques for

disk array-based servers. In ICS ’04: Proceedings of the 18th annual international

conference on Supercomputing, pages 68–78, New York, NY, USA, 2004. ACM

Press.

[40] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver Heath.

Dynamic cluster reconfiguration for power and performance. pages 75–93,

2003.

[41] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for

saving energy in server clusters. In ISPASS ’03: Proceedings of the 2003 IEEE

International Symposium on Performance Analysis of Systems and Software, pages

111–122, Washington, DC, USA, 2003. IEEE Computer Society. 1, 2

www.manaraa.com

74

[42] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, Aaron Watson, Rami

Melhem, and Daniel Mosse. Energy-efficient real-time heterogeneous server

clusters. In Proceedings of the Twelfth Real-Time and Embedded Technology and

Applications Symposium (RTAS’06), Apr. 2006. 1, 2, 3, 3.4, 3.4, 3.4.3, 4.1.2, 4.5

[43] Lui Sha, Xue Liu, Ying Lu, and Tarek Abdelzaher. Queueing model based

network server performance control. In IEEE Real-Time Systems Symposium,

Austin, TX, December 2002. 3.2, 4.2

[44] Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and Zhijian

Lu. Power-aware QoS management in web servers. In RTSS ’03: Proceedings of

the 24th IEEE International Real-Time Systems Symposium, page 63, Washington,

DC, USA, 2003. IEEE Computer Society. 2

[45] David C. Snowdon, Sergio Ruocco, and Gernot Heiser. Power management

and dynamic voltage scaling: Myths and facts. In Proceedings of the 2005

Workshop on Power Aware Real-time Computing, September 2005.

[46] Keisuke Toyama, Satoshi Misaka, Kazuo Aisaka, Toshiyuki Aritsuka, Kunio

Uchiyama, Koichiro Ishibashi, Hiroshi Kawaguchi, and Takayasu Sakurai.

Frequency-voltage cooperative cpu power control: A design rule and its ap-

plication by feedback prediction. Syst. Comput. Japan, 36(6):39–48, 2005.

[47] Leping Wang and Ying Lu. Efficient power management of heterogeneous

soft real-time clusters. Technical Report TR-UNL-CSE-2008-0004, University of

Nebraska-Lincoln, 2008. 1, 3.4

[48] Leping Wang and Ying Lu. Efficient power management of heterogeneous

soft real-time clusters. In Real-Time Systems Symposium (RTSS08), pages 323–

332, December 2008. 4.1.1

www.manaraa.com

75

[49] Leping Wang and Ying Lu. Power-efficient workload distribution for virtual-

ized server clusters. In High Performance Computing (HiPC), 2010 International

Conference on, pages 1 –10, dec. 2010. 4.5

[50] Xiaorui Wang and Yefu Wang. Co-con: Coordinated control of power and

application performance for virtualized server clusters. Technical Report, UTK,

http://pacs.ece.utk.edu/techreports/tech0908.pdf, 2008. 2

[51] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for

reduced cpu energy. In Proceedings of 1st USENIX Symposium on Operating

System Design and Implementation, pages 13–23, November 1994.

[52] Ming Xiong, Song Han, Kam-Yiu Lam, and Deji Chen. Deferrable scheduling

for maintaining real-time data freshness: algorithms, analysis, and results.

57(7):952–964, 2008. 4.1.2

[53] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia: a

load sharing facility for large, heterogeneous distributed computer systems.

Softw. Pract. Exper., 23(12):1305–1336, 1993.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 6-13-2014

	POWER MANAGEMENT IN THE CLUSTER SYSTEM
	Leping Wang

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Efficient Power Management of Heterogeneous Soft Real-Time Clusters
	Models
	System Model
	Capacity Model
	Power Model

	Power Management Problem
	Algorithm
	Optimization Heuristic Framework
	Ordered Server List
	Server Activation Thresholds
	Workload Distribution
	Algorithm Nomenclature

	Performance Evaluation
	Effects of Ordered Server List
	Effects of Activation Thresholds and Workload Distribution
	Evaluation of Integrated Algorithms
	Empirical Workload Simulation
	Effects of Feedback Control

	Power-Efficient Workload Distribution for Virtualized Sever Clusters
	Models
	System Architecture
	Capacity Model
	Power Model

	Power Management Problem
	Workload Distribution Algorithms
	PE-based Workload Distribution
	LB-based Workload Distribution
	Capacity-based Workload Distribution
	DVS and CPU Resource Allocation

	Admission Control Algorithms
	PE and LB-based Admission Control
	Capacity-based Admission Control

	Performance Evaluation
	Non-Overloaded Cluster1
	Non-Overloaded Cluster2
	Effects of Virtual Machine Placement
	Admission Control Performance

	Conclusion
	Bibliography

